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Abstract

The vibrations and linear stability of a flexible disk rotating at sub- and supercritical speeds, and coupled to the acoustic

oscillations of the surrounding fluid are investigated theoretically. The surrounding fluid is contained in a cylindrical

enclosure. The coupled gyroscopic system equations are formulated using a Kirchhoff plate model for the disk, and the

wave equation for the compressible fluid. The formulation includes systematically the effects of geometric perturbations

such as radial clearances and asymmetric disk positioning, as well as bulk rotating fluid flows driven by fluid viscosity and

disk rotation. A rigorous spatial discretization of this coupled gyroscopic system leads to a singular generalized non-

Hermitian eigenvalue problem for which a special computational treatment is presented. The underlying physics of

acoustic–structure coupling in the presence of these effects is complex—acoustic oscillations of the fluid above and below

the disk couple through disk vibrations and through the radial clearance, while the bulk fluid rotation splits the acoustic

modes into forward and backward traveling waves. Flutter instabilities arising from acoustic–structure mode coalescence

and various damping mechanisms are discussed. The predictions reveal significant influences of radial clearance,

asymmetric disk positioning, and bulk fluid rotation on the vibration and acoustic characteristics of the system that are

likely to be observed in experiments, and in practical applications such as in CD/DVD drives and hard disk drives.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics and vibrations of thin rotating disks pose significant engineering challenges in a wide variety
of industrial applications—in data storage systems including CD/DVD ROMs, hard disk drives [1,2]; in
manufacturing applications including circular saws; in turbomachinery including conventional and micro-
fabricated gas turbines [3]; and in chemical applications including biochemical filtration technologies [4]. In
applications where the disk rotates in an enclosure filled with a gas, acoustic–structure interactions can
adversely affect the stability, and noise, vibration and harshness characteristics of the device.

Broadly speaking, literature on the vibration and stability of rotating disks coupled to surrounding fluids
can be divided into three categories. In the first category, hydrodynamic lubrication theories are typically used
to model a thin gas film adjacent to the rotating flexible disk [5–8]. These models are generally valid at low gas
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

AR, Ad, Au rigid, disk, and unbaffled surface
area, respectively

an, bn generalized coordinates of upper and
lower enclosures, respectively

b�c , b�u constrained and unconstrained general-
ized coordinates, respectively

C ratio of acoustic speed to a bending
wave speed of the stationary disk
(¼ co=RoTo)

co acoustic speed of the surrounding fluid
D disk flexural rigidity (¼ EH3=12ð1� n2Þ)
E Young’s modulus of the disk material
Fn acoustic normal modes of the enclosure
H thickness of the disk
Kd [ � ] self-adjoint and positive definite stiff-

ness operator of the rotating disk
L, l air gap between the disk and top/

bottom cover of the enclosure
Lnm, Lnm acoustic–structure coupling coefficient

and its submatrix, respectively
(m1, m2) nodal diameter and nodal circle modes

of the disk
N number of basis function of disk and

acoustic modes in one dimension
Nmembrane number of basis function of mem-

brane used for unbaffled region
Nnr, Nnr inter-cavity coupling coefficient and its

submatrix, respectively
(n1, n2, n3) nodal diameter, nodal circle, and z-

directional node number of the enclosure
Q resultant pressure on the disk
qm, ur generalized coordinates of disk and mem-

brane for unbaffled region, respectively
Ri, Ro inner and outer radii of the disk,

respectively
(r1, r2) nodal diameter and nodal circle modes

of the membrane
T transformation matrix to reduce con-

straint equations
To nondimensional time constant
u0 the velocity perturbation of the flow
V volume of the enclosure
W, w transverse displacements of disk

Greek letters

G acoustic energy to total energy ratio in
the mode

z transverse displacements of membrane
k clamping ratio of the disk (¼ Ri=Ro)
L ratio of the fluid to disk mass density

(¼ rf Ro=rdH)
Ln nth uncoupled acoustical natural fre-

quency
n Poisson’s ratio of the disk material
rd mass density of the disk
rf mass density of the fluid
sR, sy radial and circumferential stresses, re-

spectively
F, f velocity potential of the acoustic enclo-

sure
cm, jr in vacuo disk and membrane modes,

respectively
O nondimensionalized rotating speed of

the disk
Od dimensionalized rotating speed of the

disk
Of nondimensionalized rotating speed of

the surrounding fluid
o eigenvalues, where l ¼ o2

Superscripts

( )* dimensional variables
a, b upper and lower enclosures, respectively
C, S cosine and sine components, respec-

tively
( � ) temporal derivatives
in, out in-phase and out-of-phase acoustic

modes, respectively
�, 4 common and distinct parts of matrices,

respectively
T transpose of a matrix

Subscripts

( ),( ) spatial derivatives
F, B, R quantities related to forward, backward,

reflective traveling waves, respectively

Acronyms

FTW forward traveling wave
BTW backward traveling wave
RTW reflective traveling wave
Re, Im real and imaginary part of eigenvalues,

respectively
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Reynolds numbers such as those found in floppy or zip disk applications. In the second category, several
researchers have either used ad hoc rotating damping models to predict flutter in enclosed and unenclosed
disks [9–12], or discrete springs to model acoustic coupling between disks in disk stacks [13,14]. While they
may be appropriate for explaining instabilities and certain vibration coupling phenomena in these systems,
these models are not entirely predictive in the sense that several model coefficients need to be determined
experimentally. The last category concerns the use of bona fide continuum models for both the fluid and the
rotating disk such as the works by Renshaw et al. [15], and the authors [16]. Such models are particularly
relevant for industrial applications such as CD/DVD ROMs and hard disk drives where Reynolds numbers
are high rendering inapplicable lubrication-type fluid models. Furthermore, in these applications the
frequencies of acoustic oscillations of the enclosure are typically of the same order of magnitude as some disk
vibration frequencies. Renshaw et al. [15] first investigated the aeroelastic stability of a flexible disk rotating in
an enclosed compressible potential flow both theoretically and experimentally. Although the theoretically
predicted trends agreed qualitatively with experimental observations, the instability mechanisms and the
acoustic–structure interactions were not discussed.

For these reasons, the authors recently investigated the acoustic–structure interactions and instability
mechanisms of a flexible rotating disk rotating in an enclosed compressible potential fluid [16]. However, this
previous study investigated a simple geometry for the problem neglecting radial gap and assuming a symmetric
placement of the disk in the enclosure. Further, this work neglected the effects of bulk rotations of the
surrounding fluid that are naturally induced by disk rotation in the enclosure. In industrial applications such
as in hard disk or CD/DVD drives, disks rotate with a radial clearance between disk and sidewall of the
enclosure, and are often not symmetrically placed in the enclosure. In addition, as the disk rotates, the
surrounding fluid is not stationary any more but is driven into complex rotational motions. As will be justified
later in the paper, this fluid flow can be approximated as a rigidly rotating bulk flow for the purposes of
studying acoustic interactions.

Not only do these geometric perturbations and rotating bulk fluid flows affect significantly the system
dynamics and stability, their inclusion leads to specific mathematical challenges that are not present
in the simplified problem studied earlier by the authors [16]. For instance, the presence of a radial
clearance leads to mixed boundary conditions in the coupled partial differential equations governing acoustic
and disk oscillations, and this eventually leads to singular terms in the discretized form of the coupled
eigenvalue problem. Likewise, the presence of rotating bulk fluid flow generates additional, previously
unaccounted for, Coriolis and centripetal accelerations terms in the governing equations for the surro-
unding compressible fluid. For these reasons, an investigation of these practically important geometric
perturbations and rotating bulk fluid flows simply cannot be undertaken within the prior mathematical
formulation by the authors.

This study examines the effect of two geometric perturbations and rotating bulk fluid flows on the
acoustic–structure interactions and instability mechanisms of a flexible rotating disk in an enclosed
compressible fluid. The results are compared against prior research by the authors [16], which dealt with
initially quiescent fluids and idealized enclosure geometry. Two key techniques to overcome the associated
mathematical challenges are presented in Section 2 along with discretized system of equations. In Section 3,
the discretized system in the presence of a radial clearance is investigated. Detailed convergence studies
are performed to ensure the fidelity of the computational results, and the acoustic–structure interactions
are studied. In Section 4, the effects of asymmetric disk positioning are investigated. The compu-
tational predictions in the presence of rotating bulk fluid flow and the effect of disk, acoustic and fluid
damping are described in Sections 5 and 6, respectively. Finally the discussion and conclusions are presented
in Section 7.

2. Coupled field equations and discretization

2.1. Derivation of coupled equations of motion in the absence of bulk rotating flow

Consider a uniform, thin annular disk, clamped at the inner and free at the outer radius, Ri and Ro,
respectively, and rotating about its axis of symmetry at a constant angular speed Od in a circular enclosure,
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Fig. 1. A schematic diagram of the rotating disk in the presence of rotating bulk fluid flow in the cylindrical enclosure.
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as shown in Fig. 1. The transverse vibrations of the rotating disk of thickness H and mass density rd are
modeled using the Kirchhoff plate theory for a homogeneous, isotropic, linearly elastic plate. Accordingly, E

and n are the Young’s modulus and Poisson’s ratio of the disk material, respectively. The transverse
deflections of the disk are described in an Eulerian representation using a ground-fixed cylindrical coordinate
system (R; y;Z). The undeflected disk mid-plane lies on Z ¼ 0, and radial and circumferential stresses s�R and
s�y generated by disk rotation are derived from classical plane stress elasticity [17]. Based upon the above
modeling assumptions, the field equation for the transverse vibrations of the rotating disk is subjected to
external resultant pressure Q.

An initially quiescent, inviscid compressible potential surrounding fluid oscillates with small amplitude in
the cylindrical enclosure. Assuming constant temperature, the fluid motion is governed by the standard wave
equation of linear acoustics. Further, the Euler equation yields a linear relationship between the pressure field
PðR; y;Z;TÞ and fluid mass density rf , at each point in the fluid domain. Therefore, the resultant pressure Q

on the disk can be expressed as

Q ¼ rf ðF;
a
T � F;bT ÞjZ¼0 � rf ½½F;T ��Z¼0, (1)

where the superscripts a and b indicate the upper and lower enclosures relative to the disk mid-plane,
respectively.

Following Ref. [16], dimensionless variables are introduced to obtain the dimensionless coupled partial
differential equations governing disk and acoustic oscillations:

w;tt þ 2Ow;ty þ O2w;yy þKd ½w� ¼ L½½f;t��z¼0, (2)

r2f ¼
1

C2
f;tt, (3)

where

Kd ½w� ¼ r
4w�

1

r
ðrsrw;rÞ;r �

1

r2
syw;yy. (4)

Kd[ � ] is a self-adjoint and positive definite stiffness operator including bending and membrane stress effects.
For reference, the dimensionless variables are defined in terms of the dimensional quantities as follows:

r ¼
R

Ro

; k ¼
Ri

Ro

; z ¼
Z

Ro

; w ¼
W

H
; la;b

¼
La;b

Ro

; t ¼
T

To

; O ¼ OdTo,

To ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rdR4

oH

D

s
; sr ¼

T2
o

rdR2
o

s�r ; sy ¼
T2

o

rdR2
o

s�y; f ¼
To

RoH
F, ð5Þ
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Fig. 2. Two-dimensional schematic diagram (in dimensionless variables) of the rotating disk and enclosure with a radial clearance.
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and L ¼ rf Ro=rdH and C ¼ co=ðRo=ToÞ are nondimensional parameters denoting, respectively, a scaled ratio
of the fluid to disk mass density and the ratio of acoustic speed to a bending wave speed of the stationary disk.

The partial differential equations (2) and (3) are also subject to several boundary conditions. First, standard
boundary conditions can be derived for the transverse vibration wðr; y; tÞ assuming the rotating disk is clamped
at the inner and free at the outer radius [15]. Secondly, three different surfaces bound the surrounding fluid—
the flexible disk, rigid walls of the enclosure, and an artificial surface connecting the upper and lower
enclosures. Normal fluid velocities satisfy the impermeability boundary conditions at the rigid walls over the
area AR, and the normal velocity matching condition on the disk surface over the area Ad. Finally, on the
artificial surface in the radial clearance over the area Au, the continuity of fluid velocity field (or equivalently
the acoustic pressure) between upper and lower enclosures (see Fig. 2) needs to be enforced. These three
boundary conditions are written as

rfa;b
� n ¼

0 on AR;

� _w on Ad ;

�_z on Au;

8><
>: (6)

where n is the unit outward normal vector to the surface associated with the specific boundary condition. The
� sign indicates the opposing normal directions on the top and bottom side of the disk and the artificial
surface over the radial clearance on Au. Note that w and f are unknown variables in the coupled equations,
and _z is the unknown normal velocity field in the radial clearance Au.

2.2. Problem formulation with rotating bulk fluid flow

While the earlier formulation assumes that the surrounding fluid is initially quiescent, in reality the disk
rotation and fluid viscosity generate complex, unsteady flows in the enclosure. Incompressible, viscous fluid
flows induced by rotating disks with and without enclosures have been the subject of a large body of literature
in the fluid mechanics community starting early in the twentieth century by von Kármán [18] who studied the
similarity solution for steady swirling flow over a rotating disk. Batchelor [19] investigated the flow between
finitely spaced co-rotating disks and postulated that outside the thin viscous boundary layer on the disks, the
fluid flow is essentially inviscid and consists of a rigidly rotating fluid core. Stewartson [20] also obtained
similar solutions of a viscous fluid confined between two coaxial rotating disks both experimentally and
theoretically. Following the studies of Batchelor and Stewartson, there has been a large body of literature
concerning the flow between two rotating disks. For instance, Brady et al. [21] showed by means of
asymptotic-numerical method that there exist multiple solutions between rotating disks depending on the end
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conditions. Recently, flow visualization techniques using laser-Doppler velocimetry have confirmed the
existence of the solid body rotation of the flow between co-rotating disks [22,23].

More relevant to the present scenario are works that focus on the fluid flow between one rotating disk
and a cylindrical enclosure. Dijkstra et al. [24] used the finite difference method to compute the flow
between two finite rotating disks enclosed by a cylinder, and compared the predictions with experi-
mental results by means of stereophotography. According to their numerical and experimental results,
viscous effects are mainly confined to the thin boundary layers on the disk and cylinder surfaces at low
Ekman numbers, the ratio of viscous to Coriolis forces. Similarly, Escudier [25] showed the flow in a
cylindrical container induced by a rotating endwall is determined by two parameters: the height-to-radius
ratio and a rotation Reynolds number, and performed flow visualizations of the bulk rotating fluid flow
in the enclosure at low Reynolds number. Recently, Soong et al. [26] performed a systematic study of the
qualitative nature of three-dimensional flow structure between two rotating disks at a relatively wide
range of rotational conditions, including the case where one disk is held fixed. They showed experimentally
that the shroud near the disk rim is helpful to the formation of the large size rotating potential core in the
enclosure.

Based on this literature, it can be deduced that purely rotating bulk fluid flow dominates global
motion of the fluid between the rotating disk and stationary boundaries, provided aspect ratio and
Reynolds number are suitable. The aspect ratio of the enclosure used in our study is comparable to
those in the literature. Further, the disk rotation speed ranges studied in this paper (and in the accom-
panying experimental paper) cover all the Reynolds numbers studied in the above literature. Our interest in
the present work is on understanding how these complex fluid flows affect acoustic–structure interactions.
Accordingly, we focus on the acoustic oscillations superimposed on the potential core or rotating bulk fluid
flow in the upper and lower enclosures. The same assumption was made in the work of Watanabe and Hara
[27] for the theoretical instability analysis of a rotating disk in the presence of a rotating viscous
incompressible fluid.

It is important to note that the unsteady or turbulent flows in the disk boundary layers or in the radial
clearance are also of significant importance in data storage devices [28,29]. Several attempts have been made
for the unsteady aerodynamic analysis of hard disk drives using the large eddy simulation model for
turbulence [30,31]. However, it should also be noted that the structural motion due to the turbulence is
assumed sufficiently small so that linear structural theory may be employed [32]. Accordingly, turbulent
pressure fluctuations can be treated as forcing functions to disk and acoustic oscillations and are not discussed
further.

Based on the above considerations, we assume an initial bulk fluid rotation in the enclosure at a
prescribed rotation speed Of, as shown in Fig. 1. The precise value of Of can in principle be deter-
mined from detailed computational fluid dynamics modeling or from experimental data and is
not of immediate concern here. In the present work instead, we will focus only on the effects of such flows
on the acoustic–structure interactions. When the disk vibrates, the fluid velocity field u is perturbed from its
initial value:

u ¼ rOf êy þ u0, (7)

where u0 is the velocity perturbation of the flow from its initial bulk fluid rotation. The resulting acoustic
equation governing the oscillations of the surrounding compressible fluid in the presence of rotating bulk fluid
flow is written in nondimensional form as [33]

r2f ¼
1

C2

q
qt
þ Of

q
qy

� �2

f. (8)

Towards subsequent computational analysis of the coupled equations (2) and (8) and the associated boundary
conditions (5), it is convenient to cast the governing equations in a fluid-fixed rotating frame. In the fluid-fixed
reference frame, Eq. (8) returns to the simple form of wave equation, Eq. (3), and the disk vibration equations
take the form

w;tt þ 2O�w;ty þ O�2w;yy þ Kd ½w� ¼ L½½f;t��z¼0, (9)



ARTICLE IN PRESS
N. Kang, A. Raman / Journal of Sound and Vibration 296 (2006) 651–675 657
where O� is the rotating speed of the disk relative to the fluid defined as

O� ¼ O� Of . (10)

In addition, Kd[ � ] is the stiffness operator as defined in Eq. (4); however, it should be noted that the membrane
stiffness terms, sr and sy, in the stiffness operator remain functions of disk rotation speed O instead of the O�.

In addition to the governing equations, it is important to verify the expressions for the boundary conditions
(6) and the pressure loading (1) in the fluid-fixed rotating frame. First, the impermeability boundary
conditions (6(a)) at the rigid wall are not influenced by the coordinate transformation. In addition, the velocity
matching conditions (6(b)) on the disk surface and in the radial clearance remain unchanged. This is because
the velocity potential, f, and displacements, w and z, are defined in the same fluid-fixed coordinate system, and
no additional convective terms arise in the associated boundary conditions.

2.3. Discretization of the coupled equations in the fluid-fixed rotating frame

In order to solve for the free vibrations of the coupled system, the system equations are discretized using the
assumed modes method via Green’s theorem. Accordingly, the fluid velocity potentials in the upper and lower
enclosures, the transverse vibrations of the rotating disk, and the fluid velocity field on the artificial surface in
the radial clearance are discretized using a set of mutually orthogonal, complete basis functions. These basis
functions are, respectively, the rigid wall acoustic modes of the upper and lower enclosures, the in-vacuo
stationary disk eigenfunctions, and the eigenfunctions of a free–free annular membrane

fa
ðr; y; z; tÞ ¼

X
n

anðtÞF
a
nðr; y; zÞ; (11a)

fb
ðr; y; z; tÞ ¼

X
n

bnðtÞF
b
nðr; y; zÞ, (11b)

wðr; y; tÞ ¼
X

m

qmðtÞcmðr; yÞ, (12)

zðr; y; tÞ ¼
X

r

urðtÞjrðr; yÞ, (13)

where an, bn, ur, qm are, respectively, the generalized coordinates for the fluid potential in the upper,
lower enclosures, and for the radial clearance and the rotating disk vibrations. Fa;b

n , cm, and jr are,
respectively, the acoustic normal modes of the upper and lower enclosures, the in vacuo disk modes
of the stationary disk, and in vacuo annular membrane modes. The annular membrane modes are
computed for uniformly tensioned membrane with free–free boundary conditions at the inner and the outer
radii. The annular membrane modes are used to discretize the fluid motion in the radial clearance. Note that
owing to the axisymmetry of the geometry, each asymmetric basis function is divided into sine and cosine
components, and the sine and cosine components are denoted in the text and appendices by the superscripts S

and C, respectively.
The discretized equations of disk vibrations are derived in the fluid-fixed rotating frame. Application of the

above discretization to Eq. (9) yields for the disk vibration

€qC
m þ 2m1O� _qS

m þ kmqC
m ¼ LAd

X
n

_aC
n LaC

nm �
X

n

_b
C

n LbC
nm

 !
, (14a)

€qS
m � 2m1O� _qC

m þ kmqS
m ¼ LAd

X
n

_aS
n LaS

nm �
X

n

_b
S

n LbS
nm

 !
, (14b)

where km are elements representing disk bending and membrane stiffness [16]. Note that Lnm indicates
acoustic–structure coupling coefficients defined by the inner product between acoustic normal modes and in
vacuo disk modes over the disk surface, and are evaluated separately for the upper- and lower-enclosure sine
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and cosine modes, i.e.,

La;b
nm ¼

1

Ad

Z
Ad

Fa;b
n cm dA. (15)

In contrast to the disk equations, the basis functions for the acoustic fields do not satisfy boundary
conditions (6). In fact, it is not possible to choose a set of comparison functions satisfying all the
acoustic boundary conditions, not only because of the complexity of the boundary conditions but also
because of the coupling with disk vibrations. For these reasons, we adopt Green’s Theorem used
routinely in acoustic–structure coupling problems [34,35]. Further, by the application of the boundary
conditions, the acoustic governing equation for upper enclosure in the fluid-fixed reference frame can be
written as [16]

1

C2

Z
Va

½F a
n
€f

a
þ ðLa

nÞ
2faF a

n�dV ¼ �

Z
Ad

F a
n _wdA�

Z
Au

Fa
n
_zdA, (16)

where the dot denotes temporal differentiation. The equation for the lower enclosure has the same form as Eq.
(16), except with a positive sign on the right-hand side due to the opposite direction of the normal vectors.
These can be regarded as weak forms of the original governing equation (3). Indeed, because exact comparison
functions were not used for the acoustic oscillations, it is expected that the resulting solution does not converge
pointwise to the correct boundary normal velocity. However, it is expected that this solution converge
correctly to the surface pressure, which is needed for the correct formulation of the coupled equation [35].
Substituting Eqs. (11)–(13) into Eq. (16) with the assistance of the orthogonality yields the discretized
equations for the velocity potentials coupled to the disk vibration

V aMa
n

C2
€an þ ðL=a

n Þ
2an

� �
¼ �Ad

X
m

_qmLa
nm � Au

X
r

_urN
a
nr, (17)

where

Na;b
nr ¼

1

Au

Z
Au

F a;b
n jr dA (18)

are the radial clearance induced inter-cavity coupling coefficients. Note that Eq. (18) is composed
of sine and cosine modes, and Nnr is evaluated separately for the upper- and lower-enclosure sine and
cosine modes.

It is interesting to note that the coupled equations (14) and (17) are indeterminate in the sense that there are
more degrees of freedom than the number of equations. To address this indeterminacy, the continuity of the
acoustic pressure across the radial clearance needs to be satisfied [34,36]

_f
a
¼ _f

b
on Au. (19)

Multiplying through by jr after substituting Eq. (11) into Eq. (19), and integrating over Au givesX
n¼0

_anNa
nr ¼

X
n¼0

_bnNb
nr. (20)

This yields the constraint equations that must be satisfied along with the coupled discretized
equations (14) and (17). In the context of the variational formulation, ur may be regarded as
Lagrange multipliers because they enforce the continuity constraint of acoustic pressures between
upper and lower enclosures. Therefore, the present analysis can also be thought of as a component
mode synthesis where the components are individual enclosures [34]. Furthermore, the relationship in Eq. (20)
yields the same result as using the Green’s function approach [36]. Finally, these are holonomic
constraints [37].

Combining Eqs. (14) and (17) with Eq. (20) yields the gyroscopically coupled discretized equations with
holonomic constraints that govern the flexible disk vibrations rotating in an enclosed compressible fluid in the
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presence of a radial clearance and rotating bulk fluid flow. In the fluid-fixed rotating frame,

Ma

Mb

Mq

0

2
666664

3
777775

€an

€bn

€qm

€ur

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ

Laq Nau

�Lbq �Nbu

�LT
aq LT

bq Gq

�NT
au NT

bu

2
666664

3
777775

_an

_bn

_qm

_ur

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

Ka

Kb

Kq

0

2
666664

3
777775

an

bn

qm

ur

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ 0. ð21Þ

The components of the above submatrices are given in Appendix A. The mass and stiffness matrices are each
composed of diagonal block matrices of upper, lower enclosures, rotating disk and membrane for a radial
clearance. Several characteristics of the coupled system in Eq. (21) are listed below:
(1)
 The system has the form of a classical discretized gyroscopic system. Due to the zero ‘‘mass’’ associated
with the generalized coordinates in the radial clearance, however, this system leads to a rank-deficient
singular eigenvalue problem. In the next section, a method will be introduced to remove this singularity to
reduce this to the form of a standard gyroscopic system without singularities.
(2)
 The system features three intrinsically different gyroscopic effects: (Laq, Lbq) describes the gyroscopic
coupling between the disk vibrations and upper- and lower-enclosure acoustic oscillations. Similarly, (Nau,
Nbu) describe the gyroscopic coupling through the radial clearance of the upper- and lower-enclosure
acoustic oscillations. Finally Gq is the gyroscopic coupling due to the disk rotation.
(3)
 The vanishing natural frequency of the fundamental acoustic mode renders positive the semi-definite
system stiffness matrix. However, the elimination of singular terms due to the radial clearance generates
nonzero terms in the fundamental acoustic mode (see Section 3). Consequently, this process ensures the
stiffness matrix is invertible, and leads to the Helmholtz stiffening effect in a similar manner as in Ref. [38].
(4)
 The system equations here allow for different air gaps in the upper and lower enclosures, i.e., LaaLb. For
a symmetrically positioned disk, all submatrices representing upper and lower enclosures become identical.
In what follows, we will investigate computationally the discretized dynamical system (21), while focusing in
sequence on the effects on the acoustic–structure interaction and coupled system instabilities of (a) radial
clearance, (b) asymmetric disk positioning, (c) rotating bulk fluid flows, and (d) disk, acoustic and fluid
dampings.

3. Effects of radial clearance

We consider first the case where a radial clearance is present while the disk is positioned symmetrically in the
enclosure and the surrounding fluid is initially stationary.

3.1. Derivation of reduced coupled discretized equations

As pointed out in Section 2, Eq. (21) is in the form of a singular eigenvalue problem due to the zero mass
terms of the radial clearance region. From a mathematical point of view, this problem falls into the category of
a singular case of generalized non-Hermitian eigenvalue problem (GNHEP). Such problems are numerically
challenging in the sense that arbitrarily small perturbations may change the eigenvalues completely [39]. In
general, the QZ algorithm is not capable of handling this type of problem in a reliable way, and only a limited
number of numerical algorithms have been developed for this problem. For example, Generalized UPper
TRIangular (GUPTRI) algorithm computes a generalization of the Schur canonical form to matrix pairs.
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However, because this algorithm generates Jordan structures, which are not stable in numerical computation,
it is not capable of solving the coupled eigenvalue problems with large condition numbers. Therefore, we
adopt a different scheme to solve this eigenvalue problem.

First, we simplify the problem considering identical upper and lower enclosures, and when n1a0, as an
example. In this case, because La ¼ Lb, if we choose same sets of basis functions for upper and lower
enclosures, the coupling terms become identical. Furthermore, the mass and stiffness terms of the upper and
lower enclosures are identical. Therefore, the corresponding problem becomes, in terms of the unknown
eigenvalues o,

Knm � o2Mnn oLnm oNnr

Knn � o2Mnn �oLnm �oNnr

�oLT
nm oLT

nm Kq þ oGq � o2Mq

�oNT
nr oNT

nr 0

2
66664

3
77775

an

bn

qm

ur

8>>><
>>>:

9>>>=
>>>;
¼ 0. (22)

Secondly, introducing several steps of row and column operations, it can be shown that the above matrix
identically simplifies to

(23)

It is interesting to note that the entire matrix is separated into two diagonal block matrices. Because the
determinant of the entire matrix is the product of the determinant of each block matrix, the eigenvalues of the
entire system are composed of the eigenvalues of the block matrices. From this it is clear that all eigenvalues of
the upper block matrix are identical to those of uncoupled acoustic enclosure. This shows explicitly that there
exist acoustic modes that are uncoupled from disk vibration, even in the presence of a radial clearance. These
are also called in-phase acoustic modes because the acoustic pressure in the upper and lower cavities oscillates
in-phase in these modes. On the other hand, the acoustic modes that couple to disk vibrations are called the
out-of-phase modes, wherein the acoustic pressure in the upper and lower enclosures oscillate out-of-phase.

Now, in order to find the coupled acoustic and disk modes, we need to find the roots of the characteristic
equation from the lower block matrix. However, the lower block matrix is still singular and it is not possible to
solve for the roots using standard eigenvalue solvers yet. To overcome this problem, we transform the singular
GNHEP to a regular problem by eliminating the singular terms. In fact, the last row equations in Eq. (23) act
as kinematic constraints to the other equations, and arise out of the acoustic pressure continuity equations
in the radial clearance. Therefore, we split the unconstrained generalized coordinates b�n and Nnr into two
parts, i.e.,

b�n ¼
b�c

b�u

( )
n

and Nnr ¼
Nc

Nu

" #
nr

, (24)

where the generalized coordinates selected for elimination are the constrained variables, b�c [40]. Further,
defining the transformation matrix, T, such that

b�n ¼ T � b�u where T ¼
�N�Tc NT

u

1

" #
, (25)

we can derive reduced coupled equations of the problem (see Appendix B for details). That is,

TTMnnT

2Mq

" #
€b
�

u

€q�m

( )
þ 2

�TTLnm

ðTTLnmÞ
T Gq

" #
_b
�

u

_q�m

( )
þ

TTKnnT

2Kq

" #
b�u

q�m

( )
¼ 0. (26)
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Clearly, the reduced discretized equation (26) still has the form of a gyroscopic system without singularities. In
addition, the artificial coordinates, ur, used for the radial clearance have been eliminated in the reduced
coupled equation. Note, however, the inter-cavity coupling terms Nnr between the upper and lower enclosures
are still retained and are embedded in other submatrices. Finally, the dimension of the reduced equations is
smaller than the original equation so that eigenvalues can be calculated efficiently.

3.2. Computational issues and convergence study

Several numerical techniques are used to ensure accurate and fast computations. First, the coupling terms
(Lnm and Nnr) are defined through inner products with circumferentially harmonic disk and membrane basis
functions. Therefore, disk and upper- and lower-enclosure acoustic modes couple only if their nodal diameters
are equal. Accordingly, the entire set of coupled equations can be divided conveniently into separate sets of
coupled equations depending on the nodal diameter number of the basis functions. For a specific nodal
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Fig. 3. Convergence characteristics of the three nodal diameter modes in the presence of a radial clearance: (a) at just below critical speed

(O ¼ 50) and (b) at just below mode coalescence speed (O ¼ 600): K, ð3; 0; 0ÞoutB ; *, ð3; 0; 0ÞoutF ; &, ð3; 0ÞR. This computation is performed

for the undamped system, with system parameters listed in Table 1 and 1 cm air gaps are chosen for the computation. Each N corresponds

to the use of N disk modes and 2N2 acoustic modes in the computation, when Nmembrane ¼ 1.

Table 1

Dimensions and mechanical properties of the disk and acoustic enclosure used in computations

Variables Data Physical meaning

Ro 4.74 cm Outer radius of the disk

Ri 1.56 cm Inner radius of the disk

Rw 4.94 cm Outer radius of the enclosure

H 0.790mm Disk thickness

rd 2700kg/m3 Disk density

rf 1.2 kg/m3 Air density

E 71GPa Young’s modulus of the disk

n 0.33 Poisson’s ratio of the disk

co 343m/s Speed of sound in air

These parameters correspond approximately to those of a hard-disk drive platter.

Note: In the absence of the radial clearance, outer radius of the enclosure is replaced by that of the disk.
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diameter number, the original dimension of the discretized system in state space is 2ð2N3 þN2 þN2
membraneÞ.

However, upon the elimination of the singular terms caused by a radial clearance, the size of the system matrix
reduces to 2f2ðN �NmembraneÞ

2
þNg. Here, N stands for the number of basis functions of the disk and

enclosure in each direction, and Nmembrane stands for the number of annular membrane basis functions. This
numerical scheme allows for effective and separate computations for each family of nodal diameter number
modes. For these reasons, in this study, each family of nodal diameter modes is calculated independently
based on system parameters listed in Table 1. The data in Table 1 correspond approximately to those of a
commercial hard disk drive.

To investigate acoustic–structure coupling and the onset of flutter accurately, detailed convergence
characteristics of the discretized system are also studied. Fig. 3 shows some key convergence characteristics of
three nodal diameter modes to highlight interesting features of this eigenvalue problem in the presence of a
radial clearance. The subscripts R, B, and F indicate reflected, backward, and forward traveling waves (RTWs,
BTWs, FTWs), respectively. For a specific nodal diameter mode, each N corresponds to the use of N disk
modes and 2N2 acoustic modes in the computation, when Nmembrane ¼ 1. For comparison, two different
rotating speeds are chosen such that Fig. 3(a) is just below critical speed (O ¼ 50), and Fig. 3(b) is just below
speed for mode coalescence (O ¼ 600). In Fig. 3, the computations are performed using one membrane basis
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function. The frequencies of the out-of-phase acoustic-dominated modes converge from above at subcritical
speeds as the number of basis functions increase, because the stiffness matrices are positive definite
[41]. Beyond the critical speed, however, the frequencies of (3,0) RTW converge from below, as reported
in Ref. [42].

Interestingly, the eigenvalues computed using different numbers of annular membrane basis functions used
in the radial clearance show different convergence characteristics. Fig. 4 shows the eigenvalues of the coupled
three nodal diameter modes at sub- and supercritical speeds with respect to the number of annular membrane
basis functions. Three different cases, when N ¼ 3, 5, and 7, are chosen to confirm the dependency of the
number of disk and acoustic modes. According to the results, all eigenvalues converge from below at
subcritical speed range, as the number of membrane basis functions is increased. Further, beyond the critical
speed (Fig. 4(b)), the frequencies of disk-dominated RTW converge from above. Based on these convergence
studies on the annular membrane basis functions used in the radial clearance, only one membrane basis
function is used in all subsequent calculations. A choice of Nmembrane ¼ 1 shows the prediction to within 1.5%
of the asymptotic value of the (3,0) RTW disk-dominated mode frequencies at O ¼ 600. Note however that
larger radial clearances may require more membrane basis functions for convergence. In addition, we choose
at least N ¼ 5 (or 56 basis functions for each family of mode with the same nodal diameter number) in the
computations in order to ensure sufficient accuracy.

Following this convergence study, the physics of acoustic–structure interaction in the presence of radial
clearance is investigated.
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3.3. Acoustic– structure interactions of enclosure with stationary disk

Because the disk and acoustic oscillation equations are coupled, it is expected that the system modes
will be no longer purely structural or purely acoustic. For most cases, a system mode will be referred to as
acoustic-dominated or disk-dominated depending on the relative contributions of disk or acoustic
oscillations to the mode in question. This question is studied more quantitatively for a stationary disk in
this subsection and the influence of radial and axial air gaps on the physics of acoustic–structure
coupling is also explored. The coupled system frequencies of the zero to three nodal diameter modes with
respect to the nondimensional length of the axial air gap, l, are shown in Fig. 5 for the parameters
described in Table 1. To highlight the effects of the radial clearance, the frequencies in the absence of radial
clearance are also shown in Fig. 5(a), which are the same results as in Ref. [16]. Note that the radius of the
enclosure in the presence of radial clearance is slightly larger (2mm) than that of the enclosure with no radial
clearance.

From Fig. 5, several effects can be observed of the radial clearance on the coupled eigenvalues of the system.
First, in the absence of radial clearance, the (0,0,0) acoustic mode has zero frequency. However, as soon as a
radial clearance is included, the (0,0,0) acoustic mode oscillations in the top and bottom enclosures couple
through the radial clearance leading to a nonzero frequency of the (0,0,0) out-of-phase acoustic mode. In fact,
the frequency of any out-of-phase acoustic mode increases as soon as a radial clearance is included. This
occurs because in the absence of radial clearance, upper- and lower-enclosure acoustic modes couple only
through disk vibrations. Once a radial clearance is included, the inter-acoustic coupling in the radial clearance
increases the overall coupling between the upper and lower cavity acoustic modes. Consequently, the strain
energy of the out-of-phase modes and therefore their natural frequencies increase once a radial clearance is
included.

Secondly, in the presence of radial clearance, eigenvalue veering occurs between (0,1) disk-dominated and
(0,0,0) out-of-phase acoustic-dominated modes in the range of l from 0.2 to 10. Because these modes are
coupled, it is only expected that eigenvalue veering occurs when their uncoupled frequencies come close to
each other. In comparison, because they are decoupled no veering occurs between (0,0) disk-dominated and
(0,0,n3) in-phase acoustic-dominated modes.

Thirdly, the frequency of the (0,0) disk-dominated mode decreases as the axial air gap decreases. This is in
contrast to the case of no radial clearance. Instead of the added stiffness effect due to the Helmholtz stiffening
effect in the absence of radial clearance, inter-acoustic coupling through the radial clearance acts as an added
mass on this mode.

Finally, similar phenomena are encountered for the asymmetric modes as well. Out-of-phase acoustic modes
exist as they do for axisymmetric modes, and several eigenvalue veering phenomena occur with changing axial
gap length. Interestingly, in the presence of radial clearance, the eigenvalue veering occurs at a larger air gap
than in the absence of radial clearance. Note that 1 cm axial air gap used in these calculations corresponds to
l ¼ 0:2 in Figs. 5 and 6. Therefore, acoustic–structure eigenvalue veering can be a realistic concern in
commercial hard disk drives.

The presence of eigenvalue veering in such coupled structure–acoustic systems is important because small
changes in system parameters can lead to the sudden change of a structure-dominated mode into an acoustic-
dominated mode and vice versa. Accordingly, the extent of acoustic coupling in a mode as measured by the
ratio of acoustic energy to the total energy in that mode can be analyzed using the ratio of acoustic to total
strain energy in the oscillation mode. This ratio, G, is defined as

G ¼
Ū

T

AKAUA

Ū
T

AKAUA þ Ū
T

qKqUq

, (27)

where KA and Kq indicate stiffness matrices of acoustic enclosures (upper and lower) and the stationary disk,
respectively, In addition, UA and Uq are the corresponding eigenvectors of acoustic and disk oscillations, and
a bar denotes complex conjugate of the eigenvectors. The percentage G in the zero to three nodal diameter
modes of the coupled system as a function of nondimensional length of axial air gap is illustrated in Fig. 6. For
comparison, these results are calculated in the absence of radial clearance also as before. Note that at large air
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gaps, sudden changes of acoustic energy occur due to the eigenvalue veering phenomena. As the air gap is
decreased, the disk modes become truly acoustic–structural with a significant component of vibrations stored
as acoustic oscillations in the enclosure. For example, nearly 20% of the energy of the (0,0) mode at a
nondimensional air gap of 10�2 is stored in the acoustic field. The results indicate that structural–acoustic
interactions are quite significant in modifying the mode shapes of the structure especially at small gap widths.
The results also imply that small form factor disk drives like a micro-drive may involve significant structure
acoustic interactions. Such eigenvalue veering phenomena are not only important in the design of low-noise
rotating disk systems but also for understanding the onset of certain types of aeroelastic instabilities of the
rotating disk.

In addition to the length of axial air gap, the extent of radial clearance also affects significantly the
acoustic–structure interaction. The coupled frequencies of three nodal diameter modes versus the
nondimensional length of radial clearance, Ro=Rw, are illustrated in Fig. 7, where solid and dotted lines
indicate the cases with and without (Lnm ¼ 0) acoustic–structure coupling, respectively. The same parameters
in Table 1 and 1 cm axial air gap were used for the computations; however, the outer disk radius Ro is
decreased. An eigenvalue veering is observed between the (3,0) disk-dominated and (3,0,0) out-of-phase
acoustic-dominated modes. These results indicate that the radial clearance can also be used as a sensitive
design parameter to alter acoustic–structure interactions in enclosed rotating disk systems.
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3.4. Acoustic– structure interactions of enclosure with rotating disk

The eigenvalues of the coupled system in the presence of disk rotation are now investigated. Fig. 8 shows
several new effects arising out of the presence of the radial clearance. First, at zero rotation speed, the
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frequency of the (3,0,0) out-of-phase acoustic mode increases by nearly 35% while that of the (3,0,0) in-phase
acoustic mode remains unchanged in the presence of the radial clearance. The small decrease in the
frequency of the in-phase acoustic mode is because the radius of enclosure is increased a little by the
amount of the radial clearance (2mm). Secondly, the effect of a radial clearance on the flutter speed is of
particular interest. While the disk critical speeds remain unchanged, the disk-dominated FTW veers
with the (3,0,0) out-of-phase acoustic modes at a much higher rotation speed as compared to the
case of no radial clearance. This is a direct consequence of the high out-of-phase acoustic mode frequency.
Finally, in the absence of damping, the three nodal diameter modes destabilize via a flutter instability
arising from mode coalescence. The flutter speed is higher and the speed range of instability is smaller in the
presence of the radial clearance.

In summary, the presence of a small radial clearance increases significantly the out-of-phase acoustic mode
frequency, increases the speed at which flutter due to mode coalescence occurs, and decreases the speed range
of this instability. The effects of disk and acoustic damping are basically the same as the case of the damped
system without a radial clearance, and will be discussed in Section 6.
4. Effect of asymmetric positioning

The effects of another geometric perturbation are now considered with LaaLb so that the disk is
asymmetrically positioned in the enclosure. Radial clearance and rotating base flows are neglected to focus on
the effects of disk positioning in the enclosure.

4.1. Existence of in-phase acoustic modes

Clearly, if the air gaps above and below the disks are different, certain symmetries of the coupled
eigenvalue problem will change. In fact, it is not at all clear whether the in-phase and out-of-phase acou-
stic modes continue to exist in the presence of such asymmetry. However, the existence of in-phase acoustic
modes can be proven mathematically even in the case of asymmetric positioning. The key idea of this
proof is through the use of matrix partitioning. If the upper and lower enclosures have the same diameters,
the acoustic modes in the upper and lower enclosures with zero z-directional modes (n1; n2; 0) are identi-
cal. This implies that both upper and lower enclsoures have several common elements in mass and
stiffness matrices corresponding to the zero z-directional modes. Therefore, because both mass and
stiffness matrices are diagonal, it is possible to split acoustic mass and stiffness matrices into two sub-
matrices; one is identical and common to both enclosures and the other represents different mat-
rices corresponding to higher z-directional acoustic modes that are distinct for the upper and lower
enclosures, i.e.,

Ma;b ¼

~M

M̂a;b

" #
and Ka;b ¼

~K

K̂a;b

" #
, (28)

where the symbols tilde (�) and hat (4) indicate the common and distinct submatrices, respectively, of upper
and lower enclosures. Furthermore, because the coupling coefficients, Lnm, are calculated over the disk surface
(z ¼ 0), they are independent of the number of z-directional modes. In other words, the coupling coefficients,
Lnm, of upper and lower enclosures are identical, as long as we choose the same family of basis functions for
them. Then, following immediately from the same idea as before, it is possible to split the coupling matrix into
two submatrices, i.e.,

La
nm ¼ Lb

nm ¼ Lnm ¼
~Lnm

L̂nm

" #
. (29)
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Substituting Eqs. (28) and (29) into Eq. (22) in the absence of radial clearance leads to the following
eigenvalue problem:

~K� o2 ~M o ~Lnm

K̂a � o2M̂a oL̂nm

~K� o2 ~M �o ~Lnm

K̂b � o2M̂b �oL̂nm

�o ~L
T

nm �oL̂
T

nm o ~L
T

nm oL̂
T

nm Kq þ oGq � o2Mq

�������������

�������������
¼ 0. (30)

Further, utililizing row and column operations, as shown in the previous section, leads to two diagonal block
matrix equations, i.e.,

(31)

Clearly, the above equation shows that the entire system matrix is composed of uncoupled and coupled
subsystems. The corresponding eigenvalues are, respectively, those of the in-phase and out-of-phase modes.
Even if a radial clearance is present in the system, the same process is applicable because the coupling
coefficients, Nnr, have the same properties as Lnm.
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4.2. Computational results

Coupled eigenvalues of three nodal diameter modes are calculated as a function of nondimensionalized
rotating speed, for disk parameters listed in Table 1. Fig. 9 illustrates two different situations; 0.1 and 1 cm air
gaps in the lower and upper enclosures, and 5 and 1 cm air gaps in the lower and upper enclosures. Based on
the computational results in Fig. 9, several effects of asymmetric positioning can be deduced.
(1)
Fig.

- - -,

radi
The volume of enclosure is proportional to the air gap, whereas the coupling coefficients are constant (see
Eq. (17)). This implies that the mass normalized acoustic–disk couplings are inversely proportional to the
air gap. Consequently, the larger the mass normalized La;b

nm, the less abrupt is the veering between disk-
dominated and acoustic-dominated eigenvalues. For example, the acoustic–structure coupling in Fig. 9(a)
is stronger than that in Fig. 8(a). At zero rotation speed, the (3,0) mode frequency of the asymmetrically
positioned disk in a small air gap is about 3% smaller than that of the symmetrically positioned disk in a
large air gap.
(2)
 An asymmetrically placed disk coupled with acoustic oscillations shows essentially the same instability
mechanisms in the absence of dissipation as the symmetric case, i.e., mode coalescence leads to flutter
instability.
(3)
 The onset of instability and its range are also changed somewhat due to the different amount of coupling.
As an example, the flutter instability occurs at lower rotating speed when the air gap is smaller.
(4)
 For the case of long cylindrical enclosures (large air gaps), the higher z-directional acoustic modes such as
the (3,0,1) mode also couple to disk vibrations. Consequently, additional instabilities due to coalescence of
disk and the higher z-directional acoustic modes also occur at higher speed ranges.
5. Effect of rotating bulk fluid flow

The effect of the rotating bulk fluid flow on the acoustic–structure interactions and instability mechanisms is
now investigated. The disk is placed symmetrically in the enclosure with 1 cm air gaps and a 2mm radial
clearance, and the system parameters are listed in Table 1. The coupled discretized equations (25) were initially
derived in the fluid-fixed rotating system. However, the final results can be easily converted to the ground-fixed

frame using a coordinate transformation.
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Nondimensionalized coupled natural frequencies of the disk-dominated modes are plotted as a function of
disk rotation speed in Fig. 10, both in the absence and presence of the rotating base flow. In this example, the
circumferential speed of the rotating base flow is assumed as 10% or 30% of the disk rotating speed. In the
Fig. 12. Real and imaginary part of nondimensionalized three nodal diameter coupled eigenvalues of the disk in the presence of rotating

fluid flow (Of ¼ 0:3 � Od ). No disk or acoustic damping is included, but 2mm radial clearance is present in this computation.

Fig. 11. Real and imaginary part of nondimensionalized three nodal diameter coupled eigenvalues of the disk in the presence of rotating

fluid flow (Of ¼ 0:1 � Od ). No disk or acoustic damping is included, but 2mm radial clearance is present in this computation.
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accompanying paper on experimental analysis of this problem, it is estimated that Of�30% Od. Interestingly
at subcritical speed, the coupled frequencies of the disk in the presence of rotating base flow are slightly greater
than those in its absence. Consequently, critical speeds of the disk in the presence of 30% rotating flow are
about 5% higher than those in its absence. However, at supercritical speed, the coupled frequencies in the
presence of rotating flow are slightly decreased.

More interesting features appear in the acoustic-dominated modes at supercritical speed ranges, as
shown in Fig. 11. Only the three nodal diameter coupled acoustic–structural modes both in the
absence and presence of a rotating base flow are described in the figure. First, as the surrounding fluid
rotates at 10% of disk rotation speed, both the in-phase and out-of-phase acoustic modes split into
FTW and BTW. It is important to note that in the absence of fluid rotation the frequencies of the
in-phase acoustic modes do not split into FTW and BTW. Secondly, flutter instability through mode
coalescence occurs at a much higher speed (about 45% higher) than in the absence of rotating fluid flow.
On the other hand, when the bulk fluid flow rotates with 30% of disk rotation, no mode coalescence occurs
(see Fig. 12). Because the frequencies of the (3,0,0) out-of-phase FTW mode increase faster than that of the
(3,0) RTW mode, they do not coalesce in the given speed range and consequently the system remains stable.
However as will be shown later, in the presence of fluid viscous damping, the system destabilizes before the
rotating speed of mode coalescence.

In summary, the presence of rotating fluid flow changes the disk critical speed, increases the flutter speed for
mode coalescence, and splits all acoustic-dominated modes into FTWs and BTWs. It is also reasonable to
expect that similar results will hold for the case of an asymmetrically positioned disk–acoustic system.
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6. Effect of dissipation

The analysis so far has focused on the instability mechanisms and acoustic–structure interactions in the
absence of dissipation. However, in reality there are several kinds of dissipations in the system that need be
considered, for instance disk internal damping, acoustic damping, and fluid viscosity.

Let us first consider the effects of viscous fluid damping. Because the potential core of the fluid
rotates rigidly at an angular velocity Of, it is reasonable to assume that the fluid viscous damping
can be modeled as a positive definite damping in the fluid-fixed reference frame. Therefore, in the pre-
sence of fluid viscous damping alone, the system is a gyroscopic system with positive definite damping
in the fluid-fixed rotating coordinate system. From this we can immediately conclude that the disk will
destabilize at its critical speed (relative to the fluid-fixed frame) due to the classical dissipation-induced
destabilization of gyroscopic systems (Kelvin-Tait and Chetaev theorem [43]). Further, this instability involves
only one system mode and is different from the mode coalescence induced flutter encountered in the absence of
dissipation.

As an example, the coupled eigenvalues in the presence of fluid viscosity damping alone are calculated in the
fluid-fixed rotating frame (see Fig. 13(a)). In this computation, the rotating speed of the fluid viscous damping
is assumed to be 30% of the disk rotation speed. This calculation is performed after including a positive
definite damping in the fluid-fixed reference frame in Eq. (9). As predicted, flutter occurs at the critical speed in
this coordinate system. However, in the ground-fixed frame this is a flutter instability occurring at supercritical
speed (see Fig. 13(b)). However, this flutter speed is much lower than the rotating speed corresponding to
mode coalescence.

The effects of acoustic- and disk-induced damping were considered in a previous work by the authors [16]. It
was shown that in the presence of acoustic damping alone, dissipation could be modeled as a positive definite
damping in the ground-fixed frame in the discretized equations. Following the KTC theorem therefore, a
traveling wave mode destabilizes exactly at its critical speed in the ground-fixed frame. It was also shown by
the authors in Ref. [16] that in the presence of disk material damping alone, a different single traveling wave
mode instability arises. This instability can also be explained using the KTC theorem, albeit in the disk-fixed
rotating frame. The unstable wave is an acoustic-dominated FTW and then instability also occurs at speeds
below the speed for mode coalescence.

It is clear that in the presence of combined fluid viscous, acoustic or disk material damping, the system
destabilizes via a single traveling wave instability. Whether the unstable wave is a reflected disk-dominated
wave or forward traveling acoustic-dominated wave depends on the proportion of disk material damping in
the overall damping. Further, these dissipation-induced instabilities will inevitably occur at speeds below the
speed at which mode coalescence occurs. Clearly, in spite of the effects of disk–acoustic coupling, the
underlying instability mechanisms observed in experiments are likely to be dissipation-induced single mode
traveling wave flutter phenomena. However disk–acoustic coupling significantly affects the coupled system
eigenvalues prior to flutter instability.

7. Conclusions

The effects of geometric perturbations and the rotating bulk fluid flows on the acoustic–structure
interactions and dynamic stability of a flexible disk rotating in an enclosed compressible fluid are investigated
theoretically. The main conclusions of the paper are:
(1)
 The presence of radial clearance modifies significantly the acoustic–structure coupling in the problem. In
the absence of any dissipation, the radial clearance does not affect the mechanism of instability, i.e., mode
coalescence leads to flutter at supercritical speeds. However, the presence of radial clearance leads to
higher speeds of mode coalescence induced flutter.
(2)
 Asymmetric positioning of the disk significantly modifies the acoustic–structure coupling. It however has
no significant effect on the mode coalescence instability mechanism. However, the flutter speed and range
are modified somewhat due to the different amount of coupling between the disk and upper and lower
enclosures.
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(3)
 The presence of bulk rotating fluid flow increases the flutter speed for mode coalescence, and splits all
acoustic-dominated modes into forward and BTWs. This effect is quite significant and at sufficiently high
bulk fluid rotation speeds, the mode coalescence instability can vanish for certain system modes.
(4)
 The presence of fluid viscous, acoustic and disk dampings have a profound effect on the system stability.
While the acoustic–structure interactions are not affected, dissipation can cause a single mode traveling
wave flutter to occur. Depending on the different contributions to overall damping, this instability occurs
somewhere between the disk critical speed in the ground-fixed frame and the mode coalescence speed.
Moreover, the unstable wave can take the form of an acoustic-dominated FTW or a disk-dominated
reflected traveling wave. It is anticipated that this dissipation-induced instability mechanism is more likely
to be observed in experiments than the mode coalescence induced instability.
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Appendix A. Components of the generalized coordinated and submatrices defined in Eq. (21)
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where all submatrices are diagonal except Lnm and Nnr, and each element is defined by the corresponding
scalar variable in the text.
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Appendix B. Derivation of the reduced discretized coupled equation (26)

Consider the singular GNHEP in Eq. (23),

(230)

To overcome the singularities in the last row equation, we define transformation matrix, T, such as

b�n ¼
b�c

b�u

( )
n

and Nnr ¼
Nc

Nu

" #
nr

. (240)

Then, consequently, we obtain from the constraint equations (last row equations in Eq. (230))

NT
nrT

_b
�

u ¼ 0. (B.1)

Now, utilizing Eq. (240), rewrite the coupled acoustic equations in Eq. (230) in terms of unconstraint
generalized coordinates,

MnnT €b
�

u � 2Lnm _q
�
m � 2Nnr _u

�
r þ KnnTb�u ¼ 0, (B.2)

and premultiply Eq. (B.2) by TT to obtain

TTMnnT €b
�

u � 2TTLnm _q
�
m � 2TTNnr _u

�
r þ TTKnnTb�u ¼ 0. (B.3)

Since we know that NT
nrT ¼ 0 or TTNnr ¼ 0 from Eqs. (B.1) and (B.3) is simplified as

TTMnnT €b
�

u � 2TTLnm _q
�
m þ TTKnnTb�u ¼ 0. (B.4)

Similarly, applying Eq. (240) to the coupled disk equation in Eq. (230) yields

Mq €q
�
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�
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and therefore we obtain
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